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A Sparse Quasi-Newton Update Derived Variationally 
With a Nondiagonally Weighted Frobenius Norm 

By Ph. L. Toint 

Abstract. The problem of symmetric sparse updating is considered from a variational point 
of view and a new class of sparse symmetric quasi-Newton updating formulae is derived. 
This class results from the use of a nondiagonally weighted Frobenius norm. The computa- 
tion of the update involves only one positive definite and symmetric linear system that has 
the same sparsity pattern as the problem itself. 

1. Introduction. There has been, in the past few years, a growing interest in 
deriving square matrix updating formulae that preserve any sparsity pattern present 
in the original matrix. These updates are usually required to possess the quasi- 
Newton property, i.e., the updated matrix has to satisfy a linear equation that 
makes it useful as an approximation to some other unknown matrix. This is the 
case in the field of nonlinear systems of equations where the approximated matrix 
is the system's Jacobian, and in minimization of nonlinear functions where the 
approximated matrix is the second derivative of the objective function. In the last 
case, the updated matrix is also required to be symmetric. 

A number of updates are now well known in the case when no sparsity condition 
applies, both in nonlinear equations (Broyden [1], Ortega and Rheinboldt [10]) and 
in unconstrained minimization (Davidon [2], Powell [11], Huang [8]). Updates that 
preserve sparsity appeared more recently, first in nonlinear equations (Schubert 
[13]) and, somewhat later, in optimization (Toint [16], [18], Marwil [9], Shanno 
[14]). Their theoretical behavior has also been investigated in some recent papers 
(Toint [17], Dennis and Schnabel [4], Powell [12], Dennis and Walker [5]). 

A fruitful approach to these updates (both sparse and nonsparse) is the so-called 
"variational approach". Let us consider the symmetric updating problem (i.e., the 
optimization updating problem) and assume that A is the matrix we want to update 
so that the updated matrix A * satisfies, for given nonzero vectors x and w in Rn, 

(1) A*x= w, 

(2) A* = (A*)T, 

It is clear that conditions (1) and (2) alone do not uniquely determine A*, except 
when A * is required to be a diagonal matrix. In general, we may fix the remaining 
degrees of freedom by remembering that there may be some valuable information 
in A already and, consequently, by requiring A * to be as close as possible to A in 
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some matrix norm. The most used matrix norm (see Dennis and More [3]) is the 
weighted Frobenius norm defined by 

(3) II MIiw= {Tr( W- IMW - 1MT)} 1/2 

for M E Rn"n and W a symmetric positive definite matrix. Expression (3) is also 
equiValent to 

n 1/2 

(4) i Ml w = { [ W- 1/2MW- 1/2]2,} 

when M is symmetric, which reduces to the usual Frobenius norm if one chooses 
W as the identity matrix. This variational approach leads to some of the classical 
dense updates (Greenstadt [7], Goldfarb [6], Dennis and More [3]) and the sparse 
update derived in [16] also belongs to the same class. When nonlinear systems are 
considered, condition (2) may be dropped, yielding other classical formulae ([I], 
[13]). 

However, the weighting matrix W is of vital importance in unconstrained 
minimization because there is some natural scaling associated with the problem. 
For if the second derivative matrix at the optimum point, H* say, is positive 
definite, then the scaling (H*) -l/2M(H*) -/2 of (4) gives a problem where the 
resulting matrix approaches the identity as M approaches H*, which is highly 
desirable. Of course, H* is unknown in practice. Nevertheless, one can exploit its 
existence by using any positive definite matrix that contains some information 
about H*, a good candidate being A, the actual approximation to the hessian. 

Unfortunately, it has not been possible until now to use that strategy in the 
sparse case, and all the formulae that have been proposed so far use a weighting 
matrix W that is diagonal whatever the sparsity pattern of A. This choice of W 
results in a generally poor scaling of A* due to the fact that the eigenvectors of W 
are always the vectors of the canonical basis, while those of the true hessian may be 
quite different. 

It is the purpose of this short paper to propose an updating procedure that uses a 
nondiagonal weighting matrix W while preserving sparsity as well as symmetry and 
the quasi-Newton equation (1). W will not be allowed to be a general symmetric 
and positive definite matrix, but we will require W to have a special form that will 
make a practical updating procedure possible. It is worth noting that the resulting 
new class of sparse updates includes a generalization of the well-known DFP 
formula to the sparse case. This is because the form that will be assumed for W will 
allow the equation Wx = w to be satisfied (see [12] for a more explicit discussion). 

Section 2 presents a more detailed formulation of the problem as well as a 
practical updating procedure. Section 3 deals with the formal derivation of the new 
class, while Section 4 contains some concluding remarks. 

2. Problem Formulation and Description of the Updating Procedure. Assume that 
A is an n x n sparse symmetric matrix of real numbers. Assume moreover that the 
sparsity conditions that apply to A are described by the conditions 

(5) Ai1= 0, (i,j) E I, 
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where I is a set of ordered pairs of integers in the range 1 to n. Assume also that, 
fori= l,...,n, 

(6) (i, i) E J, 
where J is the set of ordered pairs of integers in the considered range that do not 
belong to I. Condition (6) states that no sparsity condition applies to the diagonal, 
which is not a very heavy restriction since it is quite natural in the unconstrained 
optimization problem (see Toint [17] for a detailed comment on this question). We 
also assume that conditions (5) are consistent with the symmetry of A, i.e., that, if 
(i, j) E I, then (j, i) E I also. 

This paper is concerned with the problem of finding a correction matrix E such 
that the conditions 

(7) A* = A + E, 
(8) A, =O, (i,j) E I, 

hold together with conditions (1) and (2) and such that IIA* - AI I w is minimum, 
where W is a given symmetric positive definite matrix and where II w is defined 
by (3) or (4). 

As stated in the introduction, we require W to have a special form; namely, we 
require W to be a symmetric positive definite rank two modification of the identity 
matrix whose inverse W 1 can be written in the form 

(9) W 1 = I + axxT + (XYT + yxT) 

for x given by (1) and any a, /8 E R and y E Rn. We denote by M the class of 
interest, i.e., 

(10) M = { W E RXn I W is positive definite and (9) is satisfied). 

It is important to observe that the BFGS correction to the identity matrix 

xx T ww T 

(11 ) WI 11X 12 x Tw 

belongs to M if and only if x Ty > 0, the parameters a, /3, andy in (9) being given 
by 

(12) a IY= I+2 /3 1 W 
(x w) x w 

We now formulate our problem: we seek the correction E that, for a given 
W E M, minimizes 

(13) 2 IIEIl 

subject to 

(14) Ex r, 

(15) E= ET, 

(16) Eij =0, (i,j) E I, 

where 

(17) r=w-Ax 
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is the residual vector. [N.B. If there is no sparsity (I = 0) and if the equation 
Wx = w holds, it results from [4] that this method gives the DFP correction to A.] 

In order to describe the updating procedure, we define the vectors x(i) (i= 
1, ... , n) by the relations 

(18) x(i)j { (i, (i, j) EJ, 

as well as the operator P[B ] that projects a given matrix onto the linear manifold 
B w.r.t. the weighted Frobenius norm induced by W as defined in (3). One 
important particular member of this projector family is the unweighted Frobenius 
sparsity projector (sometimes called the "gangster operator"). If we let 

(19) S = {M E Rnxn I Mij = Oif andonlyif (i,j) E I}, 

then this projector applied to any matrix M yields 

(20) PiS[M] = { j- (i j) E J, 
0, (i j)e I. 

In general, if 

(21) A={M E Rnxn M= MTand Mx =y} 

and 

(22) V A n S, 
the matrix A* is defined by the equation 

(23) A* = Pv[A] 
because of (7) and (13)-(17). It is proved in Section 3 that A * can be calculated by 
the following updating procedure: 

(i) Calculate the matrix N from 

(24) N = Ps[ N] 

where 

(25) N = /(ry T+ yrT) + /32(rTy)(XT + yxT) + 12(rTx)yyT. 

(ii) Solve the linear system of equations in z given by 

(26) Qz = r + Nx, 

where Q has the elements 

(27) Q= x(i)x(j)i + 8ij11X(i)112 (i,j = 1, . .. , n) 

(6ij is the Kronecker symbol). 
(iii) Then build the correction matrix 

(28) E = PIS[zx + xzT] - NJ 

It is important to observe that the matrix Q defined in (27) has the same sparsity 
pattern as A and is symmetric. Moreover, Q is positive definite if and only if 

(29) 1*x(i)l :? 0, i = 1, ... ., n, 

as proved in Toint [16]. This implies that z is well defined (and relatively easy to 
compute by using available sparse symmetric solvers) provided that (29) holds. 
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One can also observe in (i)-(iii) that the obtained formula does not depend on 
the value of the parameter a of (9). 

Finally, A * is defined by (7) and clearly satisfies the sparsity conditions (8). 
In the case when some of the vectors x(i) are zero, we proceed as in the case 

W = I (see [16]), i.e., we reduce the size of the linear system (26) by deleting thejth 
row and column of (26) whenever j E K = {ij Ijx(i)II = 0). The jth row and 
column of E are also set to zero. 

3. Formal Derivation of the Update. This section presents the formal solution of 

(13)-(16). 
Assume first that no x(i)II is zero and observe that, in light of (16), (14) may be 

rewritten as 

(30) Eijx(i) = ri (i = 1, . .. ., n). 

As in [16], we now perform the change of variables 2E = B + BT and transform 
the constrained problem (13)-(16) into the equivalent formulation 

min'jjB + BTjj2W 

subject to 

(B + BT)x = 2r, Bij + Bji = 0, (i,j) E I. 

This new problem has the Lagrangian 

L = 'Tr[ W'(B + BT) W-(BT + B)] 

n n 

_~1 z [j1E (Bij + Bj1)x(i)j - 2r] yij(B,j + Bji) 
il j=l i, j) E=I 

= WTr[W'BW 'B] + 'Tr[ W-lB TWlBT] 

n n 
+ 4 Tr[ W- BWB- B T] - E(Bij + Bji)x(i)j - 2r] 

i=l j=l 

- yij(Bij + Bji), 
(i,j) E I 

where X& (i = 1, ... ., n) and yij ((i,j) E I) are the Lagrange parameters associated 
with the constraints. 

As in [7], we observe that 

aBkm a (Bkm( BijCj ) = C?nk, 

a _ _ 

Bkm[ Tr(C B)] aB (E CjiBji) Ckm 

We now use these relations to compute aL/aBij. In this calculation, the matrix B 
that appears in the expressions W'- BW'- B, W - lB TW- lB T, and W-lBW-lB T 

can be treated formally as being different in each of its two occurrences. For 
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example, we obtain 

a [ Tr( W - lB W -B)] aBi 

a a2 2 
= 3BJ) [ Tr( W -11B(O) 

W -'B(2))] + (2) [Tr(W 
- 

'B(1) W 
- 'B 

- B) [Tr(B(') W- 'B2W ')] + [Tr( W- 'BO) W- 'B 

(W-1B(2) W - I)ji + (W - 'B() W- I)ji = 2(W - 'BTW l)ij 
since 

aBU.) MPB?j 
aBij aBij 

Hence, differentiation with respect to Bij yields 

aL 2[2[ W'(B + BT) W_]1 ]-[Xx(i)j + Xjx(Aj)], (i,j) E J, = n = 

2 [ W-1(B + BT) Wj]1 - -(Y, + Yi), (i, j) E1. 

Rewriting these equations in terms of the symmetric correction E, we now obtain 

(31) 0 = 
(W-1EW-)j - [x(i)j + Xx(j)j], (i,j) E J, 

l(W EW l)ij- (Yij + Yji), (i, j) E- I. 

Symmetry has thus been enforced by our change of variables without the need of 
including supplementary Lagrange multipliers. Using the definition of W-1, (9) 
and (14) yield 

W-'EW-1 = E + 3(CXT + xcT) + 82(CTY)xxT+ N, 
A 

where c = Ey and where N is given by 

(32) N = a(rx + xr) + (rT + yrT) + [af(rTx) + 32(ry)](xyT+ T) 

+ [ a2(rTx) + 2a3(rKTy) ]XXT + 32(r Tx)yyT. 

Hence, using (31), (16) and (24), 

PNW'EW'] = pS[XT + XV] 

- E + P8S[ cxT + xc T] + 2(c Ty)PI[ xx T] + N 

and defining 

(34) d=X-A-c, 

one obtains 

P - [dxT + xdT] - I2(cTy)PS[xxT] 
A 

Applying now (14) and observing that, because of (27), 

(36) PS[pxT + xpTlx = Q 

for any p E R', we have 

(37) r = Ex = Qd - 2(CTy)PS[xxT] -Nx, 
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and, since Q is nonsingular, this yields 

(38) dQ'-(r + Nx) + /2(CTy)Q'PS[xx ]x. 

Now 

(39) P, [xx T]x= 2 Qx 

by (36), and thus (38) becomes, in light of (26), 

(40) d = z + 2 (y)X. 

Replacing d given by (40) in (35), we observe that the terms in 2(CTy) cancel out, 

yielding (28) where N is given by (32). Indeed, because of (40), 

(41) dXT + xdT = ZXT + XZT + 12(CTy)xxT. 

We now show the remarkable fact that the value of a does not influence the value 

of E and, consequently, that N may be chosen as (25). We first rewrite (28) as 

(42) E=PI[Qlrx +xrTQ1] +Np[Q-PNxx T+ XTNQ1 N]. 

Because, by (32), 

Q'Nx = aQ-lPs[rx+r xrT]x + Q -QPs[y +y ]x 

(43) + [a18(rTx) +fi2(rTy)]Q IP[xyT+yxT]x 

+[a2(rTx) + 2aI8(rTy)]Q lPQ[xxT]x + f2(rTx)Q lPQ[yyT]x 

we obtain, after some manipulations and the use of (36) and (39), that all the terms 
in a cancel out, yielding 

E = PS[ Q 'rxT + xrTQl] 

(44) +fiP,p[ Q -PIS(ry+yr T)XX T + xxTP(ryT +yrT)Q-1 T TyrT] 

+f32(r Tx) PS QlPS(yy T)XX T + XX Tp S(yy T)Q- _yT] 

Since this expression does not depend on a, we may choose a = 0 in (32), and 

we therefore obtain (25) and we are done. 
We now turn to the case where one of the x(i), x(k) say, is the zero vector. Then 

clearly the kth component of Nx is also zero and rk should be zero. If this is not the 

case, then the problem is inconsistent. This situation may occur because of 

incorrect sparsity constraints or rounding errors, and cannot be corrected in the 

present calculation. Observe that, by (17), we have Yk = rk = Xk = 0 and conse- 

quently the kth row and column of N are zero. Moreover, the remaining compo- 

nents of r, namely ri (i -# k), are independent of the kth row and column of E. We 

therefore satisfy the quasi-Newton condition (14) by setting the kth row and 

column of E to zero. This procedure may be repeated for each k such that x(k) is 

zero, and the resulting reduced problem is nonsingular. 

4. Concluding Remarks. At this point, some remarks are of interest: 

(a) All that is needed to obtain the correction E is to solve the n X n linear 

system (26) and to build the matrix N. The linear system is sparse, symmetric, and 

positive definite so that special purpose direct factorization algorithms (based on 

the minimum degree rule, for example) or conjugate gradients can be used to solve 
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it. The choice of method may depend on the sparsity structure and the amount of 
fill-in that is to be expected. A nice feature of the procedure is that the size of the 
linear system to be solved is not greater than the one that occurs from the straight 
choice W = I. 

(b) The matrix N (or N) never needs to be stored since it can easily be assembled 
elementwise when needed. 

(c) The correction matrix E is no longer the "sparsification of a rank two matrix" 
as in the case when W = I. Instead, it is easy to see that E is the "sparsification a 
rank four matrix", that is to say the sparsity constrained entries of E may be 
replaced by suitable numbers so that the resulting matrix is of rank four. However, 
E itself is generally of full rank. 

(d) The identity matrix appearing in (9) may be replaced by any suitable positive 
multiple, and (9) becomes 

(45) W'=-1 pI + a ixxT + 8(xyT + yx T) (p > O). 

It is straightforward to verify that, in this case, Eqs. (25), (26) and (28) become 
respectively 

(46) N= p(ry T+ yrT) + 12(rTy)(XVT + yxT) + 182(rTx)yyt, 

(47) Qz = p2r + PIS[N]x, 

(48) E= 2 P[ zx +NxzT .N] 

This may be useful in order to preserve the invariance under scaling of the matrix 
W (for a discussion of this aspect, see Shanno and Phua [15]). 

(e) Although the choice (12) yields the equation 

(49) Wx = w 

that is recommended by Powell in a recent paper [12], this equation is not used 
directly in the present derivation. 

Numerical experiments with the proposed update are in progress. It is believed 
that the new technique will improve the stability of the approximation to the 
hessian matrix with respect to scaling when compared with the usual choice 
W = I. 
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